Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Lancet Reg Health Am ; 20: 100466, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2270426

ABSTRACT

Background: Repurposed drugs for treatment of new onset disease may be an effective therapeutic shortcut. We aimed to evaluate the efficacy of repurposed antivirals compared to placebo in lowering SARS-CoV2 viral load of COVID-19 patients. Methods: REVOLUTIOn is a randomised, parallel, blinded, multistage, superiority and placebo controlled randomised trial conducted in 35 centres in Brazil. We include patients aged 18 years or older admitted to hospital with laboratory-confirmed SARS-CoV-2 infection, symptoms onset 9 days or less and SpO2 94% or lower at room air were eligible. All participants were randomly allocated to receive either atazanavir, daclatasvir or sofosbuvir/daclatasvir or placebo for 10 days. The primary outcome was the decay rate (slope) of the SARS-CoV-2 viral load logarithm assessed in the modified intention to-treat population. This trial was registered with ClinicalTrials.gov, number NCT04468087. Findings: Between February 09, 2021, and August 04, 2021, 255 participants were enrolled and randomly assigned to atazanavir (n = 64), daclatasvir (n = 66), sofosbuvir/daclatasvir (n = 67) or placebo (n = 58). Compared to placebo group, the change from baseline to day 10 in log viral load was not significantly different for any of the treatment groups (0.05 [95% CI, -0.03 to 0.12], -0.02 [95% CI, -0.09 to 0.06], and -0.03 [95% CI, -0.11 to 0.04] for atazanavir, daclatasvir and sofosbuvir/daclatasvir groups respectively). There was no significant difference in the occurrence of serious adverse events between treatment groups. Interpretation: No significant reduction in viral load was observed from the use of atazanavir, daclatasvir or sofosbuvir/daclatasvir compared to placebo in hospitalised COVID-19 patients who need oxygen support with symptoms onset 9 days or less. Funding: Ministério da Ciência, Tecnologia e Inovação (MCTI) - Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ); Cia Latino-Americana de Medicamentos (Clamed); Cia Industrial H. Carlos Schneider (Ciser); Hospital Research Foundation Incorporation, Australia, HCor São Paulo; Blanver Farmoquímica; Instituto de Tecnologia em Fármacos (Farmanguinhos) da Fundação Oswaldo Cruz (Fiocruz); Coordenação Geral de Planejamento Estratégico (Cogeplan)/Fiocruz; and Fundação de apoio a Fiocruz (Fiotec, VPGDI-054-FIO-20-2-13).

2.
PeerJ ; 9: e12595, 2021.
Article in English | MEDLINE | ID: covidwho-1579899

ABSTRACT

SARS-CoV-2 infects cardiac cells and causes heart dysfunction. Conditions such as myocarditis and arrhythmia have been reported in COVID-19 patients. The Sigma-1 receptor (S1R) is a ubiquitously expressed chaperone that plays a central role in cardiomyocyte function. S1R has been proposed as a therapeutic target because it may affect SARS-CoV-2 replication; however, the impact of the inhibition of S1R in human cardiomyocytes remains to be described. In this study, we investigated the consequences of S1R inhibition in iPSC-derived human cardiomyocytes (hiPSC-CM). SARS-CoV-2 infection in hiPSC-CM was productive and reduced cell survival. S1R inhibition decreased both the number of infected cells and viral particles after 48 hours. S1R inhibition also prevented the release of pro-inflammatory cytokines and cell death. Although the S1R antagonist NE-100 triggered those protective effects, it compromised cytoskeleton integrity by downregulating the expression of structural-related genes and reducing beating frequency. Our findings suggest that the detrimental effects of S1R inhibition in human cardiomyocytes' integrity may abrogate its therapeutic potential against COVID and should be carefully considered.

3.
iScience ; 24(11): 103315, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1474644

ABSTRACT

We used the recombinant trimeric spike (S) glycoprotein in the prefusion conformation to immunize horses for the production of hyperimmune globulins against SARS-CoV-2. Serum antibody titers measured by ELISA were above 1:106, and the neutralizing antibody titer against authentic virus (WT) was 1:14,604 (average PRNT90). Plasma from immunized animals was pepsin digested to remove the Fc portion and purified, yielding an F(ab')2 preparation with PRNT90 titers 150-fold higher than the neutralizing titers in human convalescent plasma. Challenge studies were carried out in hamsters and showed the in vivo ability of equine F(ab')2 to reduce viral load in the pulmonary tissues and significant clinical improvement determined by weight gain. The neutralization curve by F(ab')2 was similar against the WT and P.2 variants, but displaced to higher concentrations by 0.39 log units against the P.1 (Gamma) variant. These results support the possibility of using equine F(ab')2 preparation for the clinical treatment of COVID patients.

4.
PeerJ ; 9: e12262, 2021.
Article in English | MEDLINE | ID: covidwho-1468712

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can infect several organs, especially impacting respiratory capacity. Among the extrapulmonary manifestations of COVID-19 is myocardial injury, which is associated with a high risk of mortality. Myocardial injury, caused directly or indirectly by SARS-CoV-2 infection, can be triggered by inflammatory processes that lead to damage to the heart tissue. Since one of the hallmarks of severe COVID-19 is the "cytokine storm", strategies to control inflammation caused by SARS-CoV-2 infection have been considered. Cannabinoids are known to have anti-inflammatory properties by negatively modulating the release of pro-inflammatory cytokines. Herein, we investigated the effects of the cannabinoid agonist WIN 55,212-2 (WIN) in human iPSC-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2. WIN did not modify angiotensin-converting enzyme II protein levels, nor reduced viral infection and replication in hiPSC-CMs. On the other hand, WIN reduced the levels of interleukins six, eight, 18 and tumor necrosis factor-alpha (TNF-α) released by infected cells, and attenuated cytotoxic damage measured by the release of lactate dehydrogenase (LDH). Our findings suggest that cannabinoids should be further explored as a complementary therapeutic tool for reducing inflammation in COVID-19 patients.

5.
Vaccines (Basel) ; 9(9)2021 Sep 03.
Article in English | MEDLINE | ID: covidwho-1390813

ABSTRACT

The COVID-19 pandemic has exposed the extent of global connectivity and collective vulnerability to emerging diseases. From its suspected origins in Wuhan, China, it spread to all corners of the world in a matter of months. The absence of high-performance, rapid diagnostic methods that could identify asymptomatic carriers contributed to its worldwide transmission. Serological tests offer numerous benefits compared to other assay platforms to screen large populations. First-generation assays contain targets that represent proteins from SARS-CoV-2. While they could be quickly produced, each actually has a mixture of specific and non-specific epitopes that vary in their reactivity for antibodies. To generate the next generation of the assay, epitopes were identified in three SARS-Cov-2 proteins (S, N, and Orf3a) by SPOT synthesis analysis. After their similarity to other pathogen sequences was analyzed, 11 epitopes outside of the receptor-binding domain (RBD) of the spike protein that showed high reactivity and uniqueness to the virus. These were incorporated into a ß-barrel protein core to create a highly chimeric protein. Another de novo protein was designed that contained only epitopes in the RBD. In-house ELISAs suggest that both multiepitope proteins can serve as targets for high-performance diagnostic tests. Our approach to bioengineer chimeric proteins is highly amenable to other pathogens and immunological uses.

6.
Int J Mol Sci ; 22(16)2021 Aug 21.
Article in English | MEDLINE | ID: covidwho-1367849

ABSTRACT

(1) Background: coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been linked to hematological dysfunctions, but there are little experimental data that explain this. Spike (S) and Nucleoprotein (N) proteins have been putatively associated with these dysfunctions. In this work, we analyzed the recruitment of hemoglobin (Hb) and other metabolites (hemin and protoporphyrin IX-PpIX) by SARS-Cov2 proteins using different approaches. (2) Methods: shotgun proteomics (LC-MS/MS) after affinity column adsorption identified hemin-binding SARS-CoV-2 proteins. The parallel synthesis of the peptides technique was used to study the interaction of the receptor bind domain (RBD) and N-terminal domain (NTD) of the S protein with Hb and in silico analysis to identify the binding motifs of the N protein. The plaque assay was used to investigate the inhibitory effect of Hb and the metabolites hemin and PpIX on virus adsorption and replication in Vero cells. (3) Results: the proteomic analysis by LC-MS/MS identified the S, N, M, Nsp3, and Nsp7 as putative hemin-binding proteins. Six short sequences in the RBD and 11 in the NTD of the spike were identified by microarray of peptides to interact with Hb and tree motifs in the N protein by in silico analysis to bind with heme. An inhibitory effect in vitro of Hb, hemin, and PpIX at different levels was observed. Strikingly, free Hb at 1mM suppressed viral replication (99%), and its interaction with SARS-CoV-2 was localized into the RBD region of the spike protein. (4) Conclusions: in this study, we identified that (at least) five proteins (S, N, M, Nsp3, and Nsp7) of SARS-CoV-2 recruit Hb/metabolites. The motifs of the RDB of SARS-CoV-2 spike, which binds Hb, and the sites of the heme bind-N protein were disclosed. In addition, these compounds and PpIX block the virus's adsorption and replication. Furthermore, we also identified heme-binding motifs and interaction with hemin in N protein and other structural (S and M) and non-structural (Nsp3 and Nsp7) proteins.


Subject(s)
COVID-19/etiology , Hemoglobins/metabolism , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Viral Structural Proteins/metabolism , COVID-19/blood , Hemin/metabolism , Hemoglobins/ultrastructure , Humans , Molecular Docking Simulation , Protein Binding , Protein Domains , Proteomics , Protoporphyrins/metabolism , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/ultrastructure , Viral Structural Proteins/ultrastructure , Virus Attachment , Virus Replication
7.
PLoS Pathog ; 16(12): e1009127, 2020 12.
Article in English | MEDLINE | ID: covidwho-978950

ABSTRACT

Viruses are obligate intracellular parasites that make use of the host metabolic machineries to meet their biosynthetic needs. Thus, identifying the host pathways essential for the virus replication may lead to potential targets for therapeutic intervention. The mechanisms and pathways explored by SARS-CoV-2 to support its replication within host cells are not fully known. Lipid droplets (LD) are organelles with major functions in lipid metabolism, energy homeostasis and intracellular transport, and have multiple roles in infections and inflammation. Here we described that monocytes from COVID-19 patients have an increased LD accumulation compared to SARS-CoV-2 negative donors. In vitro, SARS-CoV-2 infection were seen to modulate pathways of lipid synthesis and uptake as monitored by testing for CD36, SREBP-1, PPARγ, and DGAT-1 expression in monocytes and triggered LD formation in different human cell lines. LDs were found in close apposition with SARS-CoV-2 proteins and double-stranded (ds)-RNA in infected Vero cells. Electron microscopy (EM) analysis of SARS-CoV-2 infected Vero cells show viral particles colocalizing with LDs, suggestive that LDs might serve as an assembly platform. Pharmacological modulation of LD formation by inhibition of DGAT-1 with A922500 significantly inhibited SARS-CoV-2 replication as well as reduced production of mediators pro-inflammatory response. Taken together, we demonstrate the essential role of lipid metabolic reprograming and LD formation in SARS-CoV-2 replication and pathogenesis, opening new opportunities for therapeutic strategies to COVID-19.


Subject(s)
COVID-19/complications , Inflammation Mediators/metabolism , Inflammation/etiology , Lipid Droplets/pathology , SARS-CoV-2/isolation & purification , Animals , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Chlorocebus aethiops , Humans , Inflammation/metabolism , Inflammation/pathology , Vero Cells , Virus Replication
8.
Blood ; 136(11): 1330-1341, 2020 09 10.
Article in English | MEDLINE | ID: covidwho-788623

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent pathogen responsible for the coronavirus disease 2019 (COVID-19). Since its emergence, the novel coronavirus has rapidly achieved pandemic proportions causing remarkably increased morbidity and mortality around the world. A hypercoagulability state has been reported as a major pathologic event in COVID-19, and thromboembolic complications listed among life-threatening complications of the disease. Platelets are chief effector cells of hemostasis and pathological thrombosis. However, the participation of platelets in the pathogenesis of COVID-19 remains elusive. This report demonstrates that increased platelet activation and platelet-monocyte aggregate formation are observed in severe COVID-19 patients, but not in patients presenting mild COVID-19 syndrome. In addition, exposure to plasma from severe COVID-19 patients increased the activation of control platelets ex vivo. In our cohort of COVID-19 patients admitted to the intensive care unit, platelet-monocyte interaction was strongly associated with tissue factor (TF) expression by the monocytes. Platelet activation and monocyte TF expression were associated with markers of coagulation exacerbation as fibrinogen and D-dimers, and were increased in patients requiring invasive mechanical ventilation or patients who evolved with in-hospital mortality. Finally, platelets from severe COVID-19 patients were able to induce TF expression ex vivo in monocytes from healthy volunteers, a phenomenon that was inhibited by platelet P-selectin neutralization or integrin αIIb/ß3 blocking with the aggregation inhibitor abciximab. Altogether, these data shed light on new pathological mechanisms involving platelet activation and platelet-dependent monocyte TF expression, which were associated with COVID-19 severity and mortality.


Subject(s)
Betacoronavirus/immunology , Blood Coagulation Disorders/pathology , Blood Platelets/pathology , Coronavirus Infections/complications , Monocytes/pathology , Pneumonia, Viral/complications , Thromboplastin/metabolism , Adult , Biomarkers/metabolism , Blood Coagulation Disorders/immunology , Blood Coagulation Disorders/metabolism , Blood Coagulation Disorders/virology , Blood Platelets/metabolism , Blood Platelets/virology , COVID-19 , Case-Control Studies , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Monocytes/metabolism , Monocytes/virology , P-Selectin/metabolism , Pandemics , Platelet Activation , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Prognosis , Prospective Studies , SARS-CoV-2 , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL